
Exploring WebRTC Potential for DICOM File Sharing

Ivan Drnasin1,3
& Mislav Grgic2,3 & Gordan Gledec3

Published online: 12 December 2019
Society for Imaging Informatics in Medicine 2019

Abstract
This paper explores the potential use of WebRTC set of protocols for DICOM file exchange. We have developed a simple proof-
of-concept peer-to-peer DICOM file-sharing web application based on a set of WebRTC protocols. Application performance is
compared with contemporary DICOM applications and transfer protocols which showed that WebRTC has its place in the
DICOM file-sharing domain.

Keywords DICOM .DIMSE . DICOMWeb .WebRTC . HTTP

Introduction

Digital Imaging and Communications in Medicine (DICOM)
is the international standard used to standardize transfer, stor-
age, retrieval, printing, processing, and display of digital radi-
ology and non-radiology images and objects.

DICOM transfer is built on top of the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite and uses two distinct
protocols to exchange messages in precise format and order
[1]: DICOM Message Service Elements (DIMSE) and
DICOMWeb protocol. DIMSE is working directly on the
top of the TCP/IP, while DICOMWeb is built on top of the
Hypertext Transfer Protocol (HTTP). The DICOM committee
first implemented Web Access to DICOM Objects (WADO)
s t andard and then DICOMWeb – more re f ined
Representational State Transfer (RESTful)-based WADO not
limited only to file retrieval services but also for storage,

Modality Worklist (MWL), and DICOM service discovery.
DICOMWeb is a very young standard and still not widely
supported, especially in imaging devices.

DICOM storage defines file structure as a header
(metadata) and data (sequence of bytes: pixels, video, or audio
sequence). One DICOM imaging procedure can vary from 1
file to 50,000 files and can take from 10 KB to 30 GB of
storage. DICOMdata can be compressed to save storage space
and to speed up the transfer.

A very important concept in the DICOM world is sharing/
transferring DICOM datasets among the radiologists, special-
ists, researchers, and patients outside of the imaging depart-
ment for referral purposes, testing, education, scientific coop-
eration, research, or teleradiology [2].

DICOM network protocols are widely used for prima-
ry diagnosis and review, inside integrated imaging de-
partment and other departments which also support
DICOM protocols and less frequently used in working
from home situation, sharing, teleradiology, testing, edu-
cation, research, etc. [2].

This gap is closed by VPNs, file-transferring protocol
(FTP), email (DICOM standardized), CDs/DVDs (standard-
ized by IHE Portable Data for Imaging), and nowadays via
web/cloud technologies including new DICOMweb proto-
cols. Some factors have influenced the popularity of
DICOM file sharing via web/cloud services:

• CDs/DVDs are clumsy, insecure, easily damaged, stolen,
lost, and can have compatibility issues.

• Email services often have attachment size limits
(~20 MB) and are inherently not meant for file sharing, espe-
cially big data sets.

• DICOM protocols, FTPs, VPNs, and web services need
network infrastructures such as public IP addresses, servers,

* Ivan Drnasin
ivan.drnasin@infomedica.hr

Mislav Grgic
mislav.grgic@fer.hr

Gordan Gledec
gordan.gledec@fer.hr

1 Infomedica, Research and Development, Sime Ljubica 55,
21000 Split, Croatia

2 Department of Wireless Communications, Faculty of EE and Comp,
University of Zagreb, Zagreb, Croatia

3 Department of Applied Computing, Faculty of EE and Comp,
University of Zagreb, Zagreb, Croatia

Journal of Digital Imaging (2020) 33:697–707
https://doi.org/10.1007/s10278-019-00305-0

http://orcid.org/0000-0001-6726-0067
mailto:ivan.drnasin@infomedica.hr
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-019-00305-0&domain=pdf

special software, special configuration, and additional effort to
manage and secure them [3].

• The Internet was originally designed as a direct commu-
nication system [4], but the depletion of IPv4 addresses and
NAT (Network Address Translation) devices has lingered di-
rect Internet connections needed for running personal FTP,
VPN, web, or DIMSE services.

• Rise of cloud computing and file-sharing web services,
such as Dropbox, Google Drive, Microsoft OneDrive, or spe-
cialized cloud medical imaging platforms, has made file shar-
ing via web simple and efficient: user uploads files via a web
browser to the cloud and sends link to the recipient.

In the recent decade, some authors, encouraged by the suc-
cess of P2P file-sharing networks, such as BitTorrent, Skype,
Gnutella, Freenet and due to limitations of accessing DICOM
nodes via Internet infrastructure, have proposed improving
medical data exchange via P2P methodologies, mostly based
on research experiments [5]. The main drive for introducing
P2P in the DICOM domain was the “discovery of huge vol-
umes of clinical information” for discovery and research
[5–8]. But due to the nature of DICOM repositories, security,
policies, and legal problems related to the P2P domain, P2P
techniques have not found solid ground in the medical imag-
ing domain.

Improving data transfer time is not a new topic in the med-
ical imaging domain. Bandwidth limitations and image size
provoked researchers to investigate compression methods,
multi-frame grouping, parallelism, bandwidth optimization,
and other techniques. In order to address such situations, re-
searchers are exploring new methods. Le Maitre et al. con-
cluded when comparing DIMSE protocol versus DICOMWeb
protocol “revealed that the STOW protocol is faster than C-
STORE, especially when transferring a large number of
DICOM objects” [9]. Rascovsky et al. assume that “docu-
ment-based databases may be better suited to store current
medical imaging data volumes” [10]. Langer et al. believe
“to achieve performance that will scale as exam sizes grow,
it would seem that fundamentally different protocols and in-
frastructure may need to be employed as health care providers
attempt to do more and faster at a distance” [12]. Maani et al.
show that “the combination of compression methods and par-
allelism also improves transmission time over both LAN and
WAN” [13].

Meanwhile, while cloud computing has become a popular
way of sharing (DICOM) files via omnipresent web browsers,
Google has introduced a Web Real-Time Communication
(WebRTC) set of protocols (Table 1). WebRTC is a collection
of communication protocols and application programming in-
terfaces (APIs) that standardize and enable real-time peer-to-
peer (direct) communication between web browsers [14].

WebRTC uses User Datagram Protocol (UDP) as a trans-
port layer [15] which does not guarantee delivery or security
but uses other protocols on top of the UDP for such tasks. In

order to encrypt and maintain data integrity, WebRTC uses the
Datagram Transport Layer Security (DTLS) protocol. DTLS
is the UDP equivalent of TLS (Transport Layer Security) pro-
tocol, which is popular and widely used for securing Internet
transactions.

For video and audio exchange, RTC protocol and its secure
version Secure RTP (SRTP) are used. To guarantee data de-
livery, WebRTC uses Data Channel API for reliable (TCP
like) and simple (WebSocket like) data transfer, such as files
or messages. Data channels use Stream Control Transmission
Protocol (SCTP), which provides reliable (configurable), sta-
ble, message-oriented communication even over unreliable
networks such as UDP. SCTP messages are carried by the
DTLS protocol [15].

WebRTC needs four types of server-side functionality to
make P2P connection work:

1. For hosting WebRTC applications, one can use ordinary
web hosting.

2. For user discovery and communication between peers, the
signaling server is used.

3. For NAT traversal, WebRTC uses STUN (Session
Traversal Utilities for NAT) server.

4. When NAT traversal fails, WebRTC uses TURN
(Traversal Using Relays around NAT) server, for relaying
data as a last resort.

In order to establish a real-time P2P connection between
web browsers (or any other clients on the Internet), WebRTC
needs to cope with NAT and firewall devices. IPv4 address
depletion has lingered direct P2P connections among the
Internet consumers; therefore direct connections are almost
impossible. Various techniques have been used to enable
P2P VOIP (Voice Over IP) telephony, P2Pmultiplayer games,
P2P computing, and generally P2P services through NAT. The
most important task is to traverse NAT devices.

NAT is a mechanismwhich rewrites IP address in IP packet
with another IP address. Main motive for NAT was IPv4 ad-
dress depletion: 232 (4,294,967,296) possible addresses. NAT
was established as a temporary solution until the new IPv6
protocol comes, but it stayed even after introducing the IPv6
protocol [16]. Actually, NAT has slowed down IPv6 introduc-
tion [16]. IPv6 should make NAT needless because it can
assign a unique IPv6 address to any Internet device. But
NAT has become popular in the meantime. Experts assume
that NAT will live together with IPV6 for many years [16].
There are two main reasons for that:

1. Reduces the need for global Internet addresses (e.g., entire
college or hospital may be located behind one IPv4
address).

2. Security reasons: NAT filters and analyzes incoming in-
ternet traffic. For example, bans connections that are not

698 J Digit Imaging (2020) 33:697–707

initiated internally by an organization. It provides a single
point for incoming network requests from the Internet
(outside) and gives control for all organization computers.

NAT stores data about private IP address inside the LAN
network and connects them with public IP addresses assigned
to the router device. NAT stores tables/maps which contain IP
addresses and ports (IP-port tuple). With NAT, every comput-
er can connect to the Internet with a joint IP address, but can’t
act as a service provider (e.g., web server) because it is not
reachable by its joint public IP address.

In order to cope with NAT traversal, WebRTC uses ICE
framework and UDP hole punching technique [15, 17]. When
NAT maps IP-port tuple, then the application is allowed to
exchange data through NAT in both directions, during some
time. Such mappings are called pinholes. Pinholes are set and
removed dynamically. The technique which enables direct
communication between programs behind different NAT net-
works is called hole punching [17]. To pin a hole, the client
contacts the known public server, and that network request
sets mapping in local NAT device. When another client con-
tacts the same public server, the server then has connections to
both clients and knows their public IP-port tuples. Then public
server exchanges IP-port tuples with both clients Fig. 1. After
that, direct communication can start Fig. 2. For that, WebRTC
uses signaling and STUN server. In case STUN fails,
WebRTC uses already mentioned TURN servers for relaying.
There is an estimate that 92% of the connections can take
place directly (STUN) while 8% of the connections require a
relaying (TURN) [15].

W3C consortium and IETF have standardized [18]
WebRTC for P2P data exchange in the desktop and mobile
web browsers. WebRTC has already used widely for video/
audio communication such as WhatsApp [19], Zoom [20]
content sharing, online gaming, distributed video delivery

content delivery networks (CDN) [21], torrent networks
[22], Internet of Things, etc.

Materials and Methods

With computational power and network connections improv-
ing in the consumer domain, we wanted to prototype
WebRTC-based DICOM file-sharing service that provides
real-time P2P DICOM image exchange, which guarantees
security and integrity with integrated DICOMViewer module.
Also, we wanted to explore and compare WebRTC protocols
with contemporary DICOM protocols for DICOM file shar-
ing: DIMSE and DICOMWeb.

To test our idea, a simple proof-of-concept (POC)WebRTC
web application was developed for DICOM file sharing and
visualization between two users. The application was devel-
oped in JavaScript/HTML/CSS.

Surge.sh [23] is used for hosting the POC application. The
publicly available SignalMaster [24] server is used to coordi-
nate communication and control messages. SignalMaster uti-
lizes the SocketIO library [25] for signaling over WebSocket.
SimpleWebRTC.js [26] was used to access the WebRTC API
which simplifies the use of the DataChannel API to exchange
DICOM files between web peers. Prior to transferring,
DICOM files are grouped and compressed by the JSZip [27]
library in order to shorten data transfer time. For processing
DICOM files, the Cornerstone dicomParser.js [28] library was
used. Libopenjpeg.js [29] and libCharLS.js [30] libraries are
used for decompressing DICOM pixels. Cornerstone Viewer
[30] was used to display images, with basic functions such as
zoom, pan, windowing, and stacking. User interface was built
with the Bootstrap toolkit [31]. Figure 3 presents all modules
and system architecture.

Table 1 WebRTC features

WebRTC features

Feature Explanation

Real-time direct data exchange Enables direct browser to browse data exchange (audio, video, and arbitrary data) in
maximum quality in certain environments via UDP-based protocols for data
exchange and NAT traversal

Security and integrity All transferred data (audio, video, and arbitrary data) must be encrypted while in
transit via DTLS protocol, an equivalent of popular TLS protocol in TCP/IP network

Simple programming interface WebRTC hides programming complexity via JavaScript API. Three main APIs
are: MediaStream: acquisition of audio and video streams

RTCPeerConnection: communication of audio and video data
RTCDataChannel: communication of arbitrary application data

Relaying data when direct
P2P connection fails

WebRTC uses TURN servers for relaying data when a direct P2P connection fails.
TURN serves do not store data, just relaying. They cost money

Multi-platform Available on all popular desktop and mobile web browsers and desktop operating systems

J Digit Imaging (2020) 33:697–707 699

We have tested performance on application and protocol
level. Application data transfer time was compared to
ClearCanvas Workstation/Server [32] (DIMSE protocol) and
DICOMCloud [33] (DicomWeb STOW-RS protocol). Four
DICOM studies (Table 2) were used for testing the

performance of both systems. Five specific programs were
prepared for protocol-level testing (Fig. 4):

1. JavaScript DataChannel program using simple-peer li-
brary [34] for testing WebRTC transfer: we have written

Fig. 2 WebRTC data pathways [17]

Fig. 1 WebRTC connection initiation [17]

700 J Digit Imaging (2020) 33:697–707

a simple JavaScript program [35] that transfers N files
from peer A to peer B, without storing images.

2. Modified DICOMWeb JavaScript client [36] for
uploading DICOM files to the STOW-RS web server.
Modifications include synchronous operations and no
limitations for file uploading.

3. Modified DICOMWeb STOW-RS web server: we have
removed image processing disk storing operations and left
only reading the image from memory to temporary mem-
ory buffer.

4. C# DIMSE SCU based on Fo-Dicom library [37] for
sending DICOM files to STORE SCP server, single-
threaded, synchronous application.

5. DIMSE Store SCP server based on Fo-Dicom library
[38]: no image reading, no storing to disk, just receiving
images from network.

Image transfer was measured in 3 different network envi-
ronments: LAN 1 Gbps bandwidth; Internet 50 Mbit band-
width, and LAN 10 Mbit bandwidth simulated via
NetLimiter software [39].

Files were transferred using 3 different protocols (Fig. 4)
from source computer (Windows 10, i7 8 GB RAM, 50 Mbit
upload bandwidth) to local Windows Server 2012 machine in
LAN (i5, 8 GB RAM, 1 Gbps bandwidth) and to remote

Fig. 3 The system architecture of DICOM file-sharing POC application

Table 2 DICOM datasets used
for testing POC application and
protocol performance

ID Dataset Compression Size of 1 file Files
number

Total
size

Comment

A US No 127 MB 1 127 MB Single large file

B MR No 516 KB 232 65 MB Small MR case

C MG No 54 MB 4 217 MB A small number of large files

D PET Yes, Lossy ~ 68 KB 4333 298 MB A large number of small files

J Digit Imaging (2020) 33:697–707 701

Windows Server 2012 (Amazon Frankfurt t2.medium EC2
instance, 503/749 Mbps bandwidth).

Mozilla Firefox was used (version 69.0.1) for testing
web clients (WebRTC and DicomWeb) since it allows
usage of larger WebRTC packets size – 65 KB [40].
Measurements were performed 3 times; average time
and standard deviation were calculated. Files were sent
one after another, synchronously, no multithreading.

Only transfer time was measured, excluding image load-
ing and preparation. A programmable timer was used,
started on sending first, and finished on receiving the last
file; all measurements are in milliseconds. IIS was a tuned
server to allow maximum worker processes with “unlim-
ited” memory. All computers had Windows firewall en-
abled and were behind a corporate network (NAT, router,
firewall). For establishing P2P connections, a publicly
available Google STUN server was used. ClearCanvas
Workstation uses multiple threads (6) for DICOM connec-
tions. DICOMWeb STOW-RS client [41] was modified to
use 4 simultaneous AJAX connections for uploading files
to the STOW-RS server [41].

Results

Developed application includes features: reading DICOM
files from hard disk; automatically organizing DICOM files
in tree hierarchy; displaying DICOM images with basic set of
tools; creating room for connecting with peers via URL; send-
ing study or series to another party; visualizing the receiving
of DICOM files; optionally compressing (depends on transfer
syntax) and grouping DICOM files before sending; and
downloading received DICOM files from sender. The running
application can be temporarily accessed at Surge.sh hosting
[42]. Test applications are available on Git servers [35–38].

The simple workflow of the application includes the fol-
lowing steps (Fig. 5):

1. Once the app is loaded in a web browser, communication
room or channel needs to be defined.

2. Room URL will be used for other parties to access the
same communication channel.

a. URL can be shared with other parties (email, instant
messaging, SMS, etc.).

3. Open DICOM images from hard disk, USB drive, or CD/
DVD drive.

4. Choose what to share.
5. Wait for the receiver to connect.
6. Send study or series as a grouped ZIP archive (com-

pressed optionally).

The application interface is shown in Fig. 6. The applica-
tion automatically detects DICOM images and sorts images
and series in the DICOM tree. The application does not com-
municate with DICOM nodes via DIMSE protocol. It is a
simple DICOM file-sharing application between 2 users,
meant for patients, doctors, or scientists.

The application performance test is presented in Fig. 7.

Fig. 4 Sending and receiving programs for application-level test (POC,
ClearCanvas, DICOMCloud) and protocol-level testing programs
(WebRTC client, DIMSE STORE SCU/SCP, DICOMWeb client/server)

702 J Digit Imaging (2020) 33:697–707

Protocol level applications were also developed and used
for measurements, presented in Figs. 8, 9, 10.

For developed POC application and test programs, there
are some caveats:

Fig. 6 POC application screenshot

Fig. 5 Use case diagram of
DICOM file-sharing POC
application

J Digit Imaging (2020) 33:697–707 703

•WebRTC encrypts data via DTLS protocol, which means
more CPU cycles and additional handshakes for transmission,
but it does not slow transmission noticeably. [43].

•WebRTC test protocol program does not signal when the
complete file is received; it is simple as possible. It means that
protocol could be a little slower, but according to our experi-
ence, no significant difference would occur.

• We have used HTTP/1.1 protocol for DICOMWeb
STOW-RS, whereas HTTP/2 could bring more performance.

• We have not encrypted communication with TLS proto-
col in DIMSE and STOW-RS, TLS adds more delay but does
not affect transmission noticeably [43].

• We have not used the TURN server; therefore P2P con-
nections behind strict NAT devices will not work (never less,
production-grade TURN servers are available on the market).

Discussion

WebRTC is not a new technology anymore, being widely in
both desktop and handheld devices, offering different services
such as audio/video P2P communication, data transfer
offloading, P2P streaming, web torrents, file sharing, etc.
From a technical point of view, such concepts are responsible

8.623

43.896

11.533

54.53

21.61

34.396

14.243

165

24.301
35.371

10.465

59.066

0

20

40

60

80

100

120

140

160

180

US MG MR PET

Ti
m

e
(s

ec
on

ds
)

Datasets

Applica�on level test

WebRTC app ClearCanvas DICOMcloud

Fig. 7 Application-level test
results for 50 Mbps bandwidth on
the Internet

13.862 22.995
7.03

30.366
7.527 8.689 20.855

359.428

6.826 11.955 4.072

43.031

0

50

100

150

200

250

300

350

400

US MG MR PET

Ti
m

e
(s

ec
on

ds
)

Datasets

Protocol level test (1 Gbps LAN)

WebRTC DICOM DIMSE DICOMweb

Fig. 8 Protocol level results for 1
Gbps bandwidth in LAN

704 J Digit Imaging (2020) 33:697–707

for massive data transfer among Internet users [11]. WebRTC
has brought different technical tools to achieve such an
amount of direct communication on the Internet.

We have conducted measures and compared the WebRTC
data transfer protocol with 2 standard DICOM communica-
tion protocols.

First, we have compared the POC application with
ClearCanvas and DICOMCloud applications. There is no
“winner.” POC application is fastest in transferring uncom-
pressed files due to the automatic compression. ClearCanvas
uses multiple threads for transactions and therefore achieves
best results with smaller datasets, while DIMSE limitation is
visible, even with multithreading, when working with a large
number of files. DIMSE loses some time in negotiating pre-
sentation contexts, transfer syntax, and other parameters be-
fore actual file transmissions [1] and is not able to send a

group of files without multiple negotiations, therefore slowing
transfer rates even more. DICOMCloud, on the other hand, is
the slowest when working with a single file while highly ef-
fective when multiple smaller files are involved. It is impor-
tant to say that POC application is not able to use multiple
threads: everything operates in a single thread, whereas
DIMSE and STOW-RS use multiple connections to the
servers.

Protocol level test programs were single-threaded and
weaknesses of DIMSE are more visible. DIMSE wins for
larger files in smaller numbers but only in high-speed envi-
ronments. On slower networks, WebRTC and STOW-RS win
over DIMSE. For a large number of files, DIMSE shows all
protocol problems.WebRTC is almost identical to STOW-RS.

When comparing protocol level results with Le Maitre
et al. [9], DIMSE was also the slowest when the number of

24.066 38.384 16.359
97.881

21.684 47.218 68.642

958.317

35.927 70.828
18.903

186.604

0

200

400

600

800

1000

1200

US MG MR PET

Ti
m

e
(s

ec
on

ds
)

Datasets

Protocol level test (50 Mbps Internet)

WebRTC DICOM DIMSE DICOMweb

Fig. 9 Protocol level results for
50 Mbps bandwidth on the
Internet

112.762

192.95

56.941

263.005

122.189

208.843

54.982

367

109.755

201.905

53.724

251.636

0

50

100

150

200

250

300

350

400

US MG MR PET

Ti
m

e
(s

ec
on

ds
)

Datasets

Protocol level test (10 Mbit Netlimiter)

WebRTC DICOM DIMSE DICOMweb

Fig. 10 Protocol level results for
10 Mbps bandwidth in LAN
(simulated via NetLimiter)

J Digit Imaging (2020) 33:697–707 705

files is increasing. For such cases as MG and CR, DIMSE was
the best option, while STOW-RS showed slower transmission
rates when sending a smaller number of large files (30–
50 MB).

There are currently limitations in POC application: (1) only
2 peers are supported, so it is meaningful to share when both
peers are online at the same time. Advanced libraries like
WebTorrent support multiple peers communicating at the
same time. (2) If any of peers turns off the device or discon-
nects, the transfer is interrupted; we have not implemented
automatic reconnecting and detection.

For any WebRTC application, the biggest problem is cer-
tainly NAT restriction which can block direct connections.
Therefore, TURN servers must relay all traffic, and relaying
is not free (e.g., production-grade global TURN relaying for
150 GB monthly bandwidth cost $83 per month [44]).

WebRTC technology is now standardized by W3C and
IETF; transmission encryption and integrity are guaranteed
by DTLS, used, and proved in many different applications.
It is made for connecting people. It brings the potential for
connecting health institutions too, especially for broadcasting
data between the group of people. It could be used for emer-
gency cases since it needs less infrastructure for enabling di-
rect network connections. One can think of a future where
every DICOM device can send datasets to anywhere in a se-
cure manner without complex server/network infrastructure.
WebRTC is constantly improving. One of the initiatives is to
include QUIC (Quick UDP Internet Connection) protocol in
WebRTC specification [45].

Conclusion

In this article, we have presented a simple proof-of-concept
peer-to-peer DICOM file-sharing application for both doctors
and patients. Such a concept is not meant to replace any
existing standardized way of DICOM file exchange to share
but rather to offer a simplified and safe way of exchanging
DICOM files for doctors and patients, by utilizing mobile/
desktop web browsers and Internet connections. POC appli-
cation automatically groups and compresses DICOM files and
therefore shortens the time to exchange files. Additional im-
provement comes from the absence of the middle web server/
cloud system between peers. It means that data exchange is
direct and there is no need for additional time to download
files from the server. Benefits are especially visible when
working with uncompressed DICOMdatasets and with a large
number of DICOM files.

WebRTC data transfer protocol was compared to DICOM
standard transmission protocols. We can conclude that P2P
protocol based on WebRTC in some cases improves transfer
time, by reducing overall time to transfer the DICOM dataset.

Since WebRTC protocol is flexible and configurable, there-
fore one can customize protocol to suit better for the purpose.

We believe that WebRTC could find its place in personal
DICOM file sharing and maybe could help in reducing overall
turnaround time in emergency cases, such as stroke cases
where “time is a brain” or on-call duty. WebRTC is a proven
and mature technology that might find its place in the medical
imaging and communication domain.

References

1. Pianyhk OS: DICOM practical introduction, and survival guide.
Berlin: Springer, 2008

2. DICOM Standards, Supplement 54: DICOM MIME Type: http://
dicom.nema.org/DICOM/supps/sup54_pc.pdf

3. Kammerer FJ, Hammon M, Schlechtweg PM, Uder M, Schwab
SA: A web-based cross-platform application for teleconsultation
in radiology. Journal of Telemedicine and Telecare 21(6):355–
363, 2015

4. Oram A: Peer-to-peer: "harnessing the benefits of a disruptive tech-
nologies". California: O'Reilly Media, Inc, 2010

5. Costa C, Ferreira C, Bastião L et al.: Dicoogle. J Digit Imaging 24:
848, 2011

6. Blanquer I, Hernadez V, Mas F: "A peer-to-peer environment to
share medical images and diagnoses providing context-based
searching". In Proceedings of the 13th Euromicro Conference on
Parallel, Distributed and Network-Based Processing. Washington:
IEEE Computer Society, 2005

7. Maglogiannis I, Constantinos D, Kazatzopoulos L: Enabling col-
laborative medical diagnosis over the internet via peer-to-peer dis-
tribution of electronic health records. J Med Syst 30(2):107–116,
2006

8. I. Maglogiannis, C. Andrikos, G. Rassias, P. Tsanakas. "A DICOM
based collaborative platform for real-time medical teleconsultation
on medical images". In: Vlamos P. (eds) GeNeDis 2016. Advances
in experimental medicine and biology, Vol. 989, Springer, Cham.

9. Le Maitre A, Fernando J, Morvan Y, Mevel G, Cordonnier E:
Comparative performance investigation of DICOM C-STORE
and DICOM HTTP-based requests, 2014 36th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society, 2014, pp. 1350–1353

10. Rascovsky SJ, Delgado JA, Sanz A, Calvo VD, Castrillom G:
Informatics in radiology: use of CouchDB for document-based
storage of DICOM objects. Radiographics 32(3):913–927, 2012

11. 10 Massive Applications Using WebRTC, available at: https://
bloggeek.me/massive-applications-using-webrtc/ (last accessed:
2019–10–17)

12. Langer SG, French T, Segovis C: C. TCP/IP Optimization over
Wide Area Networks: implications for teleradiology. Journal of
Digital Imaging 24:314–321, 2011

13. Maani R, Camorlinga S, Arnason N: A parallel method to improve
medical image transmission. Journal of Digital Imaging 25:101–
109, 2012

14. WebRTC, available at: webrtc.org (last accessed: 2018-09-09)
15. Grigorik I., High Performance Browser Networking
16. Stevens W: TCP/IP illustrated volume 1, 2nd edition, 2014
17. State of Peer-to-Peer (P2P) Communication across Network

Address Translators (NATs)
18. W3C Editor's Draft, WebRTC 1.0: Real-time Communication

Between Browsers, available at https://w3c.github.io/webrtc-pc/

706 J Digit Imaging (2020) 33:697–707

http://dicom.nema.org/DICOM/supps/sup54_pc.pdf
http://dicom.nema.org/DICOM/supps/sup54_pc.pdf
https://bloggeek.me/massive-applications-using-webrtc/
https://bloggeek.me/massive-applications-using-webrtc/
http://webrtc.org
https://w3c.github.io/webrtc-pc/

19. What’s up with WhatsApp and WebRTC?, available at: https://
webrtchacks.com/whats-up-with-whatsapp-and-webrtc/ (last
accessed: 2019-07-08)

20. Hancke P., How Zoom’s web client avoids using WebRTC
(DataChannel Update), available at https://webrtchacks.com/
zoom-avoids-using-webrtc/

21. Peer5 The World Cup and P2P Streaming, available at: https://
docsend.com/view/ern48k8 (last accessed: 2018-09-09)

22. WebTorrent, available at: https://webtorrent.io/faq (last accessed:
2018-09-09)

23. Surge.sh static hosting, available at: surge.sh (last accessed: 2018-
09-09)

24. SignalMaster signaling server, available at: http://github.com/
andyet/signalmaster (last accessed: 2018-09-09)

25. Socket.IO library, available at: socket.io (last accessed: 2018-09-
09)

26. Simple WebRTC library, available at: http://github.com/andyet/
SimpleWebRTC (last accessed: 2018-09-09)

27. Javascript ZIP library, available at: http://github.com/Stuk/jszip
(last accessed: 2018-09-09)

28. Cornerstone DICOM parser, available at: http://github.com/
cornerstonejs/dicomParser (last accessed: 2018-09-09)

29. Cornerstone Open JPEG library, available at: http://github.com/
cornerstonejs/openjpeg/ (last accessed: 2018-09-09)

30. Cornerstone project, available at: http://github.com/cornerstonejs/
(last accessed: 2018-09-09)

31. Bootstrap, available at: http://github.com/twbs/bootstrap (last
accessed: 2018-09-09)

32. Clear Canvas, https://github.com/ClearCanvas/ClearCanvas (last
accessed: 2018-07-08)

33. DicomCloud, https://github.com/DICOMcloud/DICOMcloud (last
accessed 2019-07-08)

34. Simple-peer library, available at https://github.com/feross/simple-
peer (last accessed: 2019-10-17)

35. Simple-peer DataChannel protocol test, available at: https://
bitbucket.org/snippets/willy_skipper/KroBa7 (last accessed: 2019-
10-17)

36. DICOMWeb client protocol test, available at: https://bitbucket.org/
snippets/willy_skipper/znMoxn last accessed: 2019-10-17)

37. C# DIMSE SCU protocol test, available at: https://bitbucket.org/
snippets/willy_skipper/qnBox7 (last accessed: 2019-10-17)

38. DIMSE Store SCP server based on Fo-Dicom library, available at:
https://bitbucket.org/snippets/willy_skipper/7nBoxk (last accessed:
2019-10-17)

39. Netlimiter, available at: https://www.netlimiter.com/ (last accessed:
2019-10-08)

40. Large Data Channel Messages, available at: https://blog.mozilla.
org/webrtc/large-data-channel-messages/ (last accessed: 2019-10-
08)

41. DICOMWeb JS client, available at: https://github.com/
DICOMcloud/DICOMweb-js (last accessed: 2019-10-08)

42. Dicom.live - Dicom file-sharing project, available at: http://dicom.
live (last accessed: 2019-07-08)

43. Is TLS fast yet?, available at: https://istlsfastyet.com/ (last
accessed: 2019-10-08)

44. Xirsys, available at: https://xirsys.com/pricing/ (last accessed:
2019-10-17)

45. QUIC API for Peer-to-peer Connections, available at https://w3c.
github.io/webrtc-quic/ (last accessed: 2019-15-10)

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Digit Imaging (2020) 33:697–707 707

https://webrtchacks.com/whats-up-with-whatsapp-and-webrtc/
https://webrtchacks.com/whats-up-with-whatsapp-and-webrtc/
https://webrtchacks.com/zoom-avoids-using-webrtc/
https://webrtchacks.com/zoom-avoids-using-webrtc/
https://docsend.com/view/ern48k8
https://docsend.com/view/ern48k8
https://webtorrent.io/faq
http://github.com/andyet/signalmaster
http://github.com/andyet/signalmaster
http://github.com/andyet/SimpleWebRTC
http://github.com/andyet/SimpleWebRTC
http://github.com/Stuk/jszip
http://github.com/cornerstonejs/dicomParser
http://github.com/cornerstonejs/dicomParser
http://github.com/cornerstonejs/openjpeg/
http://github.com/cornerstonejs/openjpeg/
http://github.com/cornerstonejs/
http://github.com/twbs/bootstrap
https://github.com/ClearCanvas/ClearCanvas
https://github.com/DICOMcloud/DICOMcloud
https://github.com/feross/simple-peer
https://github.com/feross/simple-peer
https://bitbucket.org/snippets/willy_skipper/KroBa7
https://bitbucket.org/snippets/willy_skipper/KroBa7
https://bitbucket.org/snippets/willy_skipper/znMoxn
https://bitbucket.org/snippets/willy_skipper/znMoxn
https://bitbucket.org/snippets/willy_skipper/qnBox7
https://bitbucket.org/snippets/willy_skipper/qnBox7
https://bitbucket.org/snippets/willy_skipper/7nBoxk
https://www.netlimiter.com/
https://blog.mozilla.org/webrtc/large-data-channel-messages/
https://blog.mozilla.org/webrtc/large-data-channel-messages/
https://github.com/DICOMcloud/DICOMweb-js
https://github.com/DICOMcloud/DICOMweb-js
http://dicom.live
http://dicom.live
https://istlsfastyet.com/
https://xirsys.com/pricing/
https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-quic/

	Exploring WebRTC Potential for DICOM File Sharing
	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	References

